FULLY CONNECTED VIRTUAL and PHYSICAL
PEROVSKITE PHOTOVOLTAIC LAB
Knowledge Exchange Portal

Combining Drift-Diffusion and Equivalent-Circuit Models for Efficient 3D Tandem Solar Cell Simulations

Andreas Fell; Oliver Schultz-Wittmann; Christoph Messmer; Martin C. Schubert; Stefan W. Glunz

Abstract:
For upscaling silicon based tandem solar cells from small laboratory sizes to full size formats compatible with industrial production, two-dimensional (2-D) and 3-D effects like metal grid layout, perimeter design, and lateral inhomogeneities gain importance for tandem cell development. For understanding and quantifying such effects, 3-D tandem modeling is helpful, but the capabilities of existing solar cell simulation tools is limited in this respect. In this article, we describe a numerically efficient 3-D tandem modeling approach implemented in the solar cell simulation software Quokka3. It combines a 1-D equivalent-circuit (EQC) model of the top cell within the front side's boundary condition with either the quasi-neutral 3-D drift-diffusion model or an EQC model for the bottom cell's bulk carrier transport. This way the addition of a top cell to a single-junction silicon bottom cell model in Quokka3 adds little effort in terms of computational time and is thus compatible with large-area 3-D simulations up to full cell geometries. We showcase the usefulness of this approach by investigating various perimeter designs of small-area silicon-perovskite cells.

ViperLab Expertise

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 101006715

How to reach us

Project coordinated by

HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENERGIE GMGH
Hahn Meitner Platz 1
14109 Berlin
Germany

www.helmholtz-berlin.de

This website