Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg

Open-Circuit Voltage Losses in Perovskite/Cu(In,Ga)Se₂ Tandem Partners

Ana Kanevce¹, Rico Gutzler¹, Tina Wahl¹, Asier Murillo Marrero², Eugenia Zugasti Rosende² and Theresa Magorian FriedImeier¹

Center for Solar Energy and Hydrogen Research (ZSW), Meitnerstraße 1, 70563 Stuttgart, Germany
 National Renewable Energy Center (CENER). Ciudad de la Innovación, 7, 31621 Sarriguren (Navarra) Spain

Objective

- To analyse the recombination in perovskite and Cu(In,Ga)Se₂ (CIGS) solar cells individually and together in a tandem structure
- To evaluate the impact of individual layer properties on device performance

Introduction

Perovskite and CIGS are good tandem candidates due their favorable optoelectronic properties A schematic of the Perovskite / CIGS structure used in simulations

Location of SRH Recombination

- In the perovskite cell, most recombination happens in the transport layers
- In the CIGS under perovskite, the recombination is mostly in the absorber

Simulated SRH recombination rate as a function of position in:

- Nonradiative recombination is the dominant loss mechanism in both devices
- We show numerical simulations to understand the dominant contributors of Shockley–Read– Hall (SRH) recombination
- The individual cells are simulated with SCAPS
 1D and the tandem structure with Silvaco
 TCAD software

Impact of Carrier Density in the Electron Transport Layer

Increased carrier density in the PCBM layer:
flattens the bands in PCBM and decreases the

supply of holes available for recombination

- decreases the sensitivity of performance to interface defects
- can improve tandem conversion efficiency by > 4% absolute
- reduces the overall SRH recombination rate

PCBM / Perovskite Interface Recombination

Contour plot showing the simulated combined impact of carrier density in PCBM layer and interface recombination at the Perovskite / PCBM interface

CIGS Bottom Cell

- Comparing standard band gap (min band gap at the notch =1.1 eV) and low band gap CIGS (1 eV)
- Measured low band gap CIGS shows significantly lower minoritycarrier lifetime
- Under a 700 nm filter, the efficiencies are comparable

Time-resolved photoluminescence measurements for different CIGS band gaps

Calculated solar cell parameters as a function of defect density in the CIGS absorber for low band gap (1eV at the notch) and 'standard' CIGS (1.1 eV at the notch)

- n (cm⁻³) n (cm⁻³)
- Impact of interface recombination is strongly dependent on the band bending in transport layers
- Low carrier density in the transport layer and a defective interface can decrease the efficiency by 5% absolute

Conclusions

- The dominant nonradiative recombination in the perovskite is in transport layers and interfaces, while for CIGS it is in the absorber
- Higher carrier density in ETL layer increases the tolerance to defects in the ETL layer and at the interface
- While a bottom cell with a low band gap provides a more favorable current, the filtered efficiency and minority carrier lifetimes slightly favor a moderately higher band gap

Acknowledgements

- The authors acknowledge German Federal Ministry for Economic Affairs and Energy under Project Number 03EE1078 (ODINCIGS).
- The authors acknowledge the VIPERLAB project financed by European Union's Horizon 2020 (grant agreement N°101006715).
- The single junction simulation reported in this work were performed with the use of SCAPS-1D program developed at the University of Gent, while the tandem simulations used Silvaco TCAD software package.