

General Introduction to Standardisation and Activities of TC113 -Nanotechnology for electrotechnical products and systems

Viperlab Standardization Workshop

17.1.2024 ||| Dr. Jens Hauch ||| High Throughput Methods in Photovoltaics

Why Standardize?

11

11

To avoid this!

National and International Standardization

	National z.B. Deutschland	Regional z.B. Europa	International
General	DIN		ISO
Electrical Engineering		CENELEC	IEC
Telecom- munications		ETSI	ITU

© 2005 DIN Deutsches Institut für Normung e. V.

What is the IEC (International Electrotechnical Commission)?

Wikipedia:

"The International Electrotechnical Commission (IEC) is an international standards organization that prepares and publishes international standards for all electrical, electronic and related technologies – collectively known as "electrotechnology".

IEC standards cover a vast range of technologies from **power generation, transmission** and distribution to home appliances and office equipment, **semiconductors,** fibre optics, batteries, **solar energy, nanotechnology** and marine energy as well as many others.

The IEC also manages four global conformity assessment systems that certify whether equipment, system or components conform to its international standards."

What is the IEC (International Electrotechnical Commission)?

170+ countries

A global network that covers 99% of the world population and offers a free programme to developing countries

10000+ standards

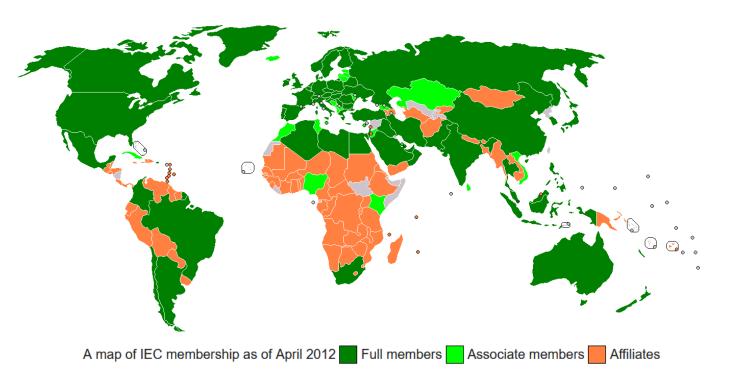
Develops international standards that represent a global concensus of state-of-the-art know-how

1M+ certificates

Four Conformity Assessment Systems that cover the breadth of electrical and electronic technologies

20000 experts

Over 20 000 experts and more than 100 years expertise


Who is in it?

Wikipedia:

"The IEC is made up of **members, called national committees**, and each NC represents its nation's electrotechnical interests in the IEC.

This includes manufacturers, providers, distributors and vendors, consumers and users, all levels of governmental agencies, professional societies and trade associations as well as standards developers from national standards bodies.

National committees are constituted in different ways. Some NCs are public sector only, some are a combination of public and private sector, and some are private sector only. **About 90% of those who prepare IEC standards work in industry.**

60 Full members – Voting rights + access to managing functions
23 Associate members – Limited voting rights
87 Affiliates – access to standards for national adoption

How is it organized?

Technical committees and subcommittees

IEC technical committees are composed of experts sent by IEC National Committee. Please contact your NC if you would like to participate in IEC work.

Facts & figures

IEC TCs/SCs

Technical Committees	
Subcommittees	
Total	

115

102

217

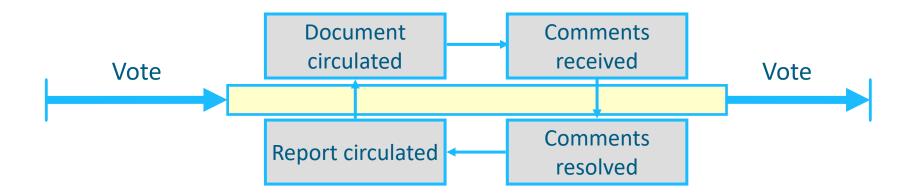
771

195

671

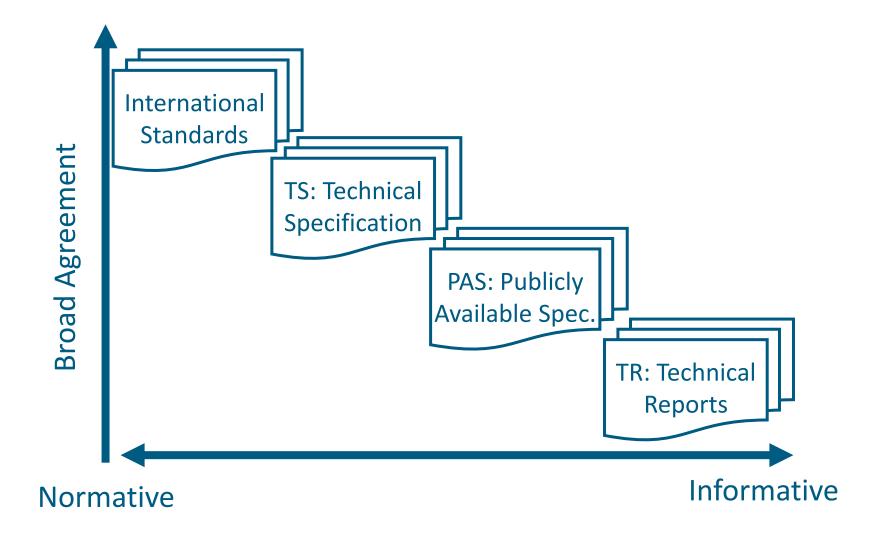
1637

۷	V	G	S
		_	_


Working Groups	
Project Teams	
Maintenance Teams	
Total	

- National experts are chosen by their National Committee (NC) as delegates to share their technical expertise and represent the national requirements in Technical Committees (TCs).
- Each TC defines its scope and area of activity.
 - A TC can form one or more **Subcommittees** depending on the extent of its work programme. Each SC defines its scope and reports directly to the parent TC.
- TCs & SCs form **working groups** to prepare standards in a process of consensus.

Stages of the Standardization Process



Project Stage	Associated Document Name	Abbreviation
0 Preliminary Stage	Preliminary work item	PWI
1 Proposal Stage	New work item proposal	NP
2 Preparatory Stage	Working draft(s)	WD
3 Committee Stage	Committee draft(s)	CD
4 Enquiry Stage	Enquiry draft (Committee draft for vote)	CDV
5 Approval Stage	Final draft international standard	FDIS
6 Publication Stage	International standard	IEC

Products of the IEC

IEC subcommittees

TC82 – Solar photovoltaic energy systems

To prepare international standards for systems of photovoltaic conversion of solar energy into electrical energy and for all the elements in the entire photovoltaic energy system. In this context, the concept "photovoltaic energy system" includes the entire field from light input to a photovoltaic cell to and including the interface with the electrical system(s) to which energy is supplied.

TC113 – Nanotechnology standardization for electrical and electronic products and systems

Standardization of the technologies relevant to electrotechnical products and systems in the field of nanotechnology in close cooperation with other committees of IEC and ISO

TC119 – Printed Electronics

Standardization of terminology, materials, processes, equipment, products and health / safety / sustainability in the field of printed electronics

Relevant subcommittees of the IEC (my personal interpretation)

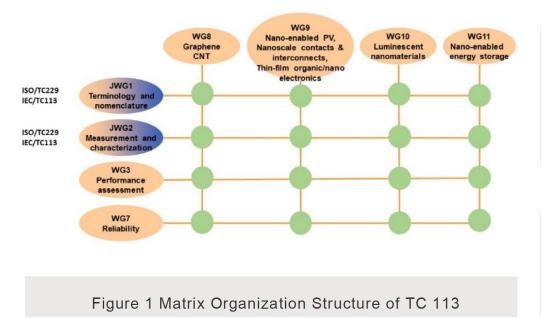
IEC subcommittees

TC82 – Solar photovoltaic energy systems

Product oriented standards

TC113 – Nanotechnology standardization for electrical and electronic products and systems

Technology oriented standards


TC119 – Printed Electronics

Process/Device oriented standards

TC113 – Nanotechnology for electrotechnical products and systems

Scope: Standardization of the technologies relevant to electrotechnical products and systems in the field of nanotechnology in close cooperation with other committees of IEC and ISO

WG 7: Reliability

To develop standards for the assessment of reliability in the field of nano electro technology. The focus is on failure mechanisms and failure modes related to the use of nanomaterials, nanostructures, material interfaces and nanoscale contacts with consideration of size dependent effects. Standards to be developed include test methods to identify failure mechanisms, analyse failure effects and estimate the reliability (i.e. the early fail rate, measure in units of parts per million in the first 1000h of operation) and the durability of nano-enabled products, i.e. the fit rate (1 fit = 1 fail in 10^9 hours of operation).

WG 9: Nano-enabled photovoltaics, Thin-film organic/nano electronics, Nanoscale contacts and interconnects

To develop standards in the area of nano-enabled photovoltaics and organic electronics to facilitate the assurance of quality and reliability of materials and intermediates, subject to the general concepts of blank detail specifications (BDS) and Key Control Characteristics (KCCs). Furthermore the WG is responsible for standardization in the area of nano-scale contacts and interconnects.

IEC TS 62876-2-1:2018

Nanotechnology – Reliability Assessment – Part 2-1:

Nano-enabled photovoltaic devices – Stability test

part of

in cooperation with

ISOS – the starting point

2009 Recommended practices: Organic Photovoltaics Lifetime Assessment

Solar Energy Materials & Solar Cells 95 (2011) 1253-1267

Consensus stability testing protocols for organic photovoltaic materials and devices

Matthew O. Reese^a, Suren A. Gevorgyan^b, Mikkel Jørgensen^b, Eva Bundgaard^b, Sarah R. Kurtz^a, David S. Ginley^a, Dana C. Olson^a, Matthew T. Lloyd^a, Pasquale Morvillo^c, Eugene A. Katz^d, Andreas Elschner^e, Olivier Haillant^f, Travis R. Currier^g, Vishal Shrotriya^g, Martin Hermenau^h, Moritz Riede^h, Kiril R. Kirovⁱ, Gregor Trimmel^j, Thomas Rath^j, Olle Inganäs^k, Fengling Zhang^k, Mattias Andersson^k, Kristofer Tvingstedt^k, Monica Lira-Cantu¹, Darin Laird^m, Christine McGuiness^m, Srinivas (Jimmy) Gowrisanker^m, Michael Pannone^m, Min Xiao^m, Jens Hauchⁿ, Roland Steimⁿ, Dean M. DeLongchamp^o, Roland Rösch^p, Harald Hoppe^p, Nieves Espinosa^q, Antonio Urbina^q, Gülsah Yaman-Uzunoglu^r, Jörg-Bernd Bonekamp^s, Albert J.J.M. van Breemen^t, Claudio Girotto^u, Eszter Voroshazi^u, Frederik C. Krebs^{b,*}

Why am I here?

Consensus on ISOS Protocols for Stability Assessment and Reporting for

Perovskite Photovoltaics

Mark V. Khenkin¹, Eugene A. Katz^{1,2,*}, Antonio Abate³, Giorgio Bardizza⁴, Joseph J. Berry⁵, Christoph J. Brabec^{6,7}, Francesca Brunetti⁸, Vladimir Bulović⁹, Quinn Burlingame¹⁰, Aldo Di Carlo⁸, Rongrong Cheacharoen¹¹, Yi-Bing Cheng¹², Alexander Colsmann¹³, Stephane Cros¹⁴, Konrad Domanski¹⁵, Michał Dusza¹⁶, Christopher J. Fell¹⁷, Stephen R. Forrest^{18,19,20}, Yulia Galagan²¹, Diego Di Girolamo^{8,22}, Michael Grätzel²³, Anders Hagfeldt²⁴, Elizabeth von Hauff²⁵, Harald Hoppe²⁶, Jeff Kettle²⁷, Hans Köbler³, Marina S. Leite²⁸, Shengzhong (Frank) Liu^{29,30}, Yueh-Lin Loo^{10,31}, Joey M. Luther⁵, Chang-Qi Ma³², Morten Madsen³³, Matthieu Manceau¹⁴, Muriel Matheron¹⁴, Michael McGehee^{5,34}, Rico Meitzner²⁶, Mohammad Khaja Nazeeruddin³⁵, Ana Flavia Nogueira³⁶, Cağla Odabaşı³⁷, Anna Osherov⁹, Nam-Gvu Park³⁸, Matthew O. Reese⁵, Francesca De Rossi^{8,39}, Michael Saliba⁴⁰, Ulrich S. Schubert^{25,41}, Henry J. Snaith⁴², Samuel D. Stranks⁴³, Wolfgang Tress^{20,23}, Pavel A. Troshin^{44,45}, Vida Turkovic³³, Sjoerd Veenstra²¹, Iris Visoly-Fisher^{1,2}, Aron Walsh^{46,47}, Trystan Watson³⁹, Haibing Xie⁴⁸, Ramazan Yıldırım³⁷, Shaik Mohammed Zakeeruddin²³, Kai Zhu⁵ and Monica Lira-Cantu^{48,*}

*Corresponding authors, e-mail: keugene@bgu.ac.il, monica.lira@icn2.cat

¹Department of Solar Energy and Environmental Physics, Swiss Inst. for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.

²Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel.

³ Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.

⁴ European Commission, Joint Research Centre (JRC), Ispra (VA), Italy.

⁵ National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

And a characterial in the the trial of the term

IEC TS 62876-2-1:2018

		À		Sign in Ci	eate account	
IEC	Webstore		Search		Q	
	International Electrotechnical Commission		Advanced search			
HOME	SIGN IN HELP CART 0					

IEC TS 62876-2-1:2018

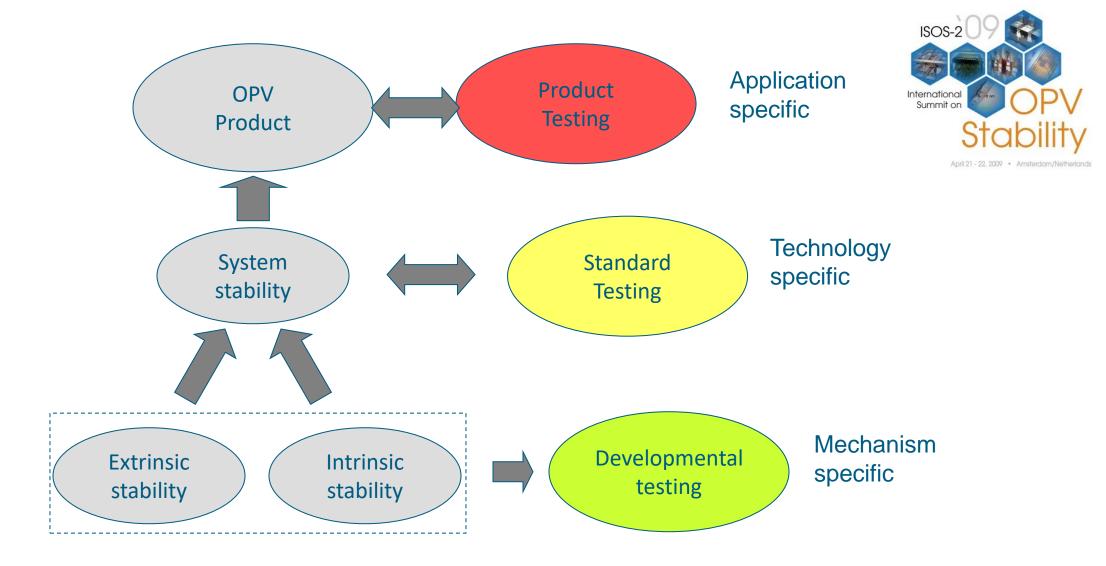
Nanotechnology - Reliability assessment - Part 2-1: Nanoenabled photovoltaic devices - Stability test

TC 113 | Additional information

Abstract

PREVIEW

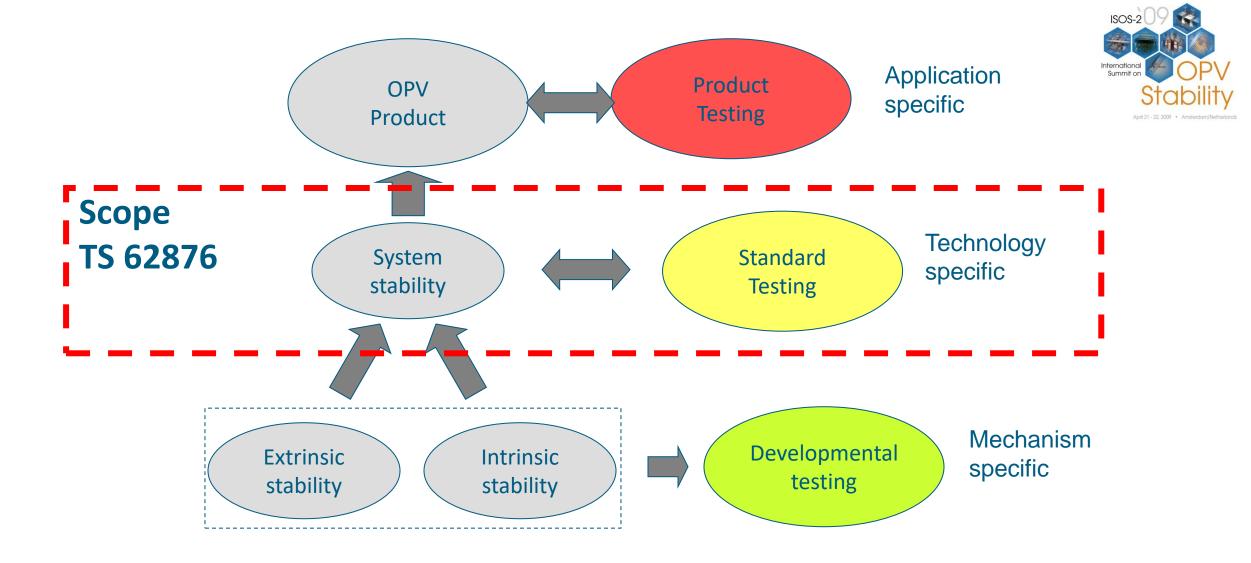
IEC TS 62876-2-1:2018 establishes a general stability testing programme to verify the stability of the performance of nanomaterials and nano-enabled photovoltaic devices (NePV) devices. These devices are used as subassemblies for the fabrication of photovoltaic modules through a combination with other components. This testing programme defines standardized degradation conditions, methodologies and data assessment for technologies. The results of these tests define a stability under standardized degradation conditions for quantitative evaluation of the stability of a new technology. The procedures outlined in this document were designed for NePV, Show more »



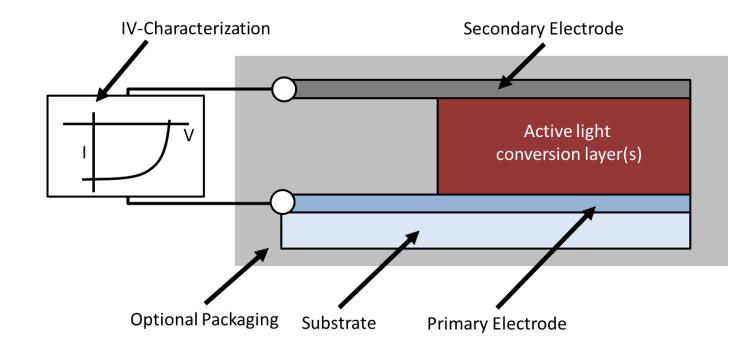
Look inside

- Table of contents
- Foreword
- Introduction
- Scope
- · Normative references

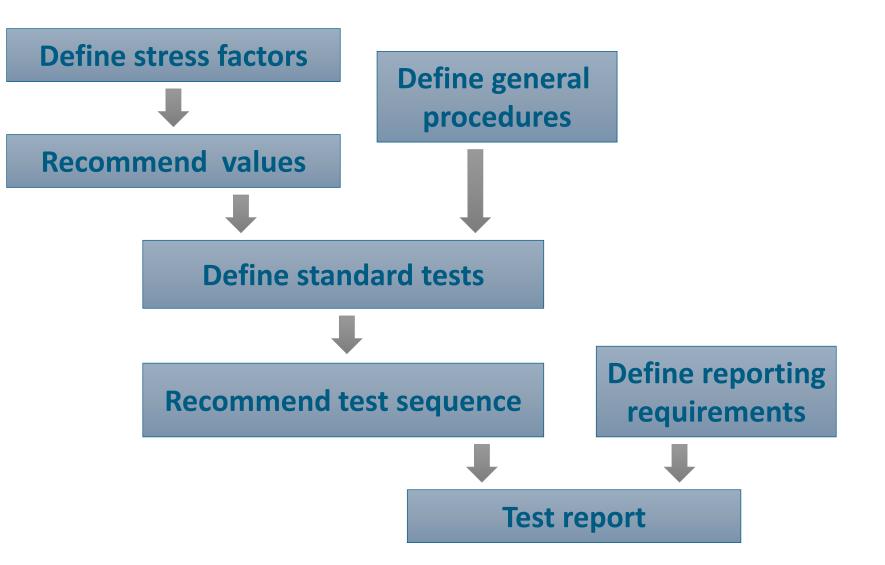
The testing hierarchy

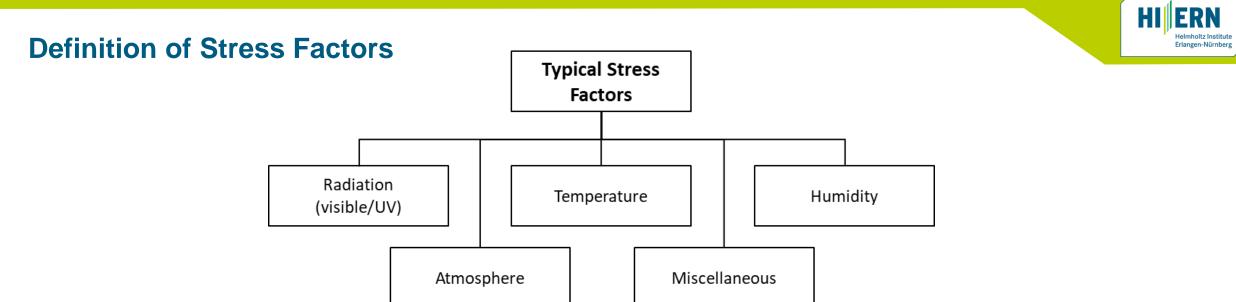

General Philosophy

- Original Target "Technical Report" status
- Provide guidelines for stability testing
- Perform technology testing NOT product testing
- Define stresses & procedures to establish comparability (=define yardstick for stability)
- Establish procedures that would allow certified laboratories to perform tests and verify performance
- Recommend a sequence of tests that reflects a basic stability testing program for NePV technology
- Establish reporting requirements


The testing hierarchy

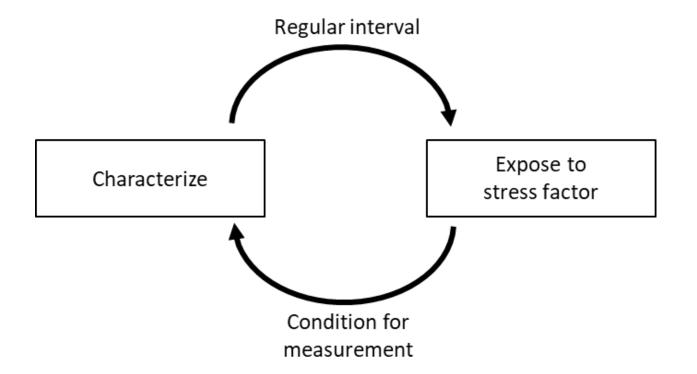
The Name and Terminology


NANOTECHNOLOGY – RELIABILITY ASSESSMENT– Part 2.1 Nano-enabled photovoltaic devices – Stability test

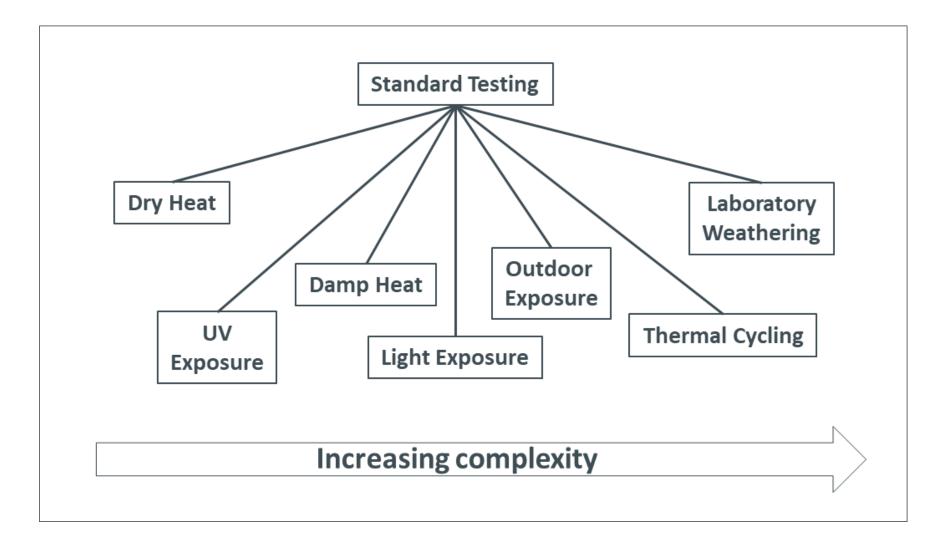


NePV = Nano-enabled photovoltaic devices

Approach



Stress		Typical values				
Temperature (T)	Ambient	45 °C	65 °C	85 °C	Thermal cycle	
					-40 °C to 85 °C	
Humidity (H)	Ambient	0 % rh	50 % rh	85 % rh		
Light (L)	No(dark)	Outdoor	Solar simulator	Lamp	UV	
			(AM1.5, 1000 W/m²)			
Misc. (M)	Atmospheric	Mechanical				
	effects	(pressure, shear)				


Definition of General Procedure

Overview of Tests

Defined tests

	Test ID and description						
Parameter	ST1	ST2	ST3	ST4	ST5	ST6	ST7
, arameter	Dry heat	UV exposure	Damp heat	Light exposure	Outdoor exposure	Laboratory weathering	Thermal cycling
Light	None	UV	None	Daylight, (600-1 000) W/m ²	Ambient	Daylight, (600-1 000) W/m ²	None
Temperature	45 °C	65 °C	45 °C	45 °C	Ambient	38 °C	-40 °C to
	<u>65 °C</u>		65 °C	<u>65 °C</u>			+85 °C
	85 °C		<u>85 °C</u>	85 °C			
Humidity	Ambient	Ambient	85 % rh	Ambient	Ambient	50 % rh/ water spray	Ambient
Environment	Oven	UV chamber	Climate chamber	Light soak chamber	Outdoor	Weathering instrument	Climate chamber
Load	None	None	None	Passive or Active, M _{pp}	Passive or Active, M _{pp}	Passive or Active, M _{pp}	None

HI ERN Helmholtz Institute Erlangen-Nürnberg

Detailed Description of Tests

5.1 ST1- Dry Heat

5.1.1 Purpose

To determine the ability of the DUT to withstand thermal stress.

5.1.2 Temperature/Humidity

The test shall be carried out in accordance with IEC 60068-2-2. Typical temperatures used in this test $65^{\circ}C/75^{\circ}C/85^{\circ}C$ to test for degradation mechanisms. Recommended is testing at $85^{\circ}C$. Termination of the test is either T_{80} or user defined.

5.1.3 Data Logging

Periodic with an initial interval of 1 measurement per day for the first 5 days, with no more than 6 hours interruption of stress exposure per measurement. Thereafter devices should be measured weekly with no more than 6 hours interruption of stress exposure. The total exposure time in stress test shall be recorded in hours. IV characterization under calibrated solar simulation is necessary. Devices shall be stored under open circuit condition. Allow cells to equilibrate to standard conditions before efficiency measurements.

5.1.4 Output

Conditioned efficiency or maximum power output should be extracted from IV-measurements and plotted over time. Then the burn-in range, the initial conditioned efficiency, the time to T_{80} , and the decay rate of the performance should be extracted from the plot and reported. Visually inspect the device and record any changes.

5.1.5 Required Equipment

- a) Calibrated AM1.5 Solar Simulator according to IEC 60904-9 or alternatively a light source calibrated by the DSR(Differential Spectral Resposivity⁶⁾)-method may be used. For IV-Measurement also refer to notes in 3.1.
- b) Furnace with a temperature stability +/-2°C, Temperature logger in accordance with IEC 60068-2-2

Reporting Requirements

6 Report

Performance characteristics and details of any failures and re-tests shall be prepared by testing laboratories in accordance with ISO/IEC 17025. Each test report shall include at least the following information.

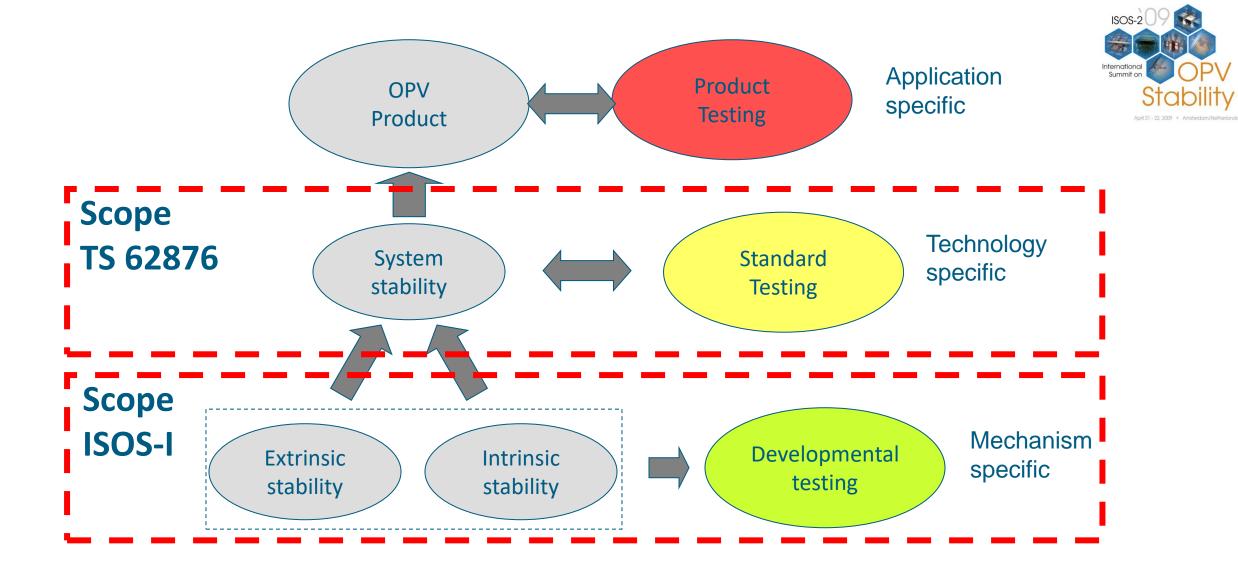
- a) A title.
- b) Name and address of the test laboratory and location where the tests were carried out.
- c) Unique identification of the report on each page.
- d) Name and address of the client, where appropriate.
- e) Description and identification of the DUTs and technology tested.
- f) Characterization and condition of the test item.
- g) Date of receipt of test item and date(s) of test, where appropriate.
- h) Identification of test method used.
- i) Reference to sampling procedure, where relevant.
- j) Number of devices in the test and number of devices that failed during testing.
- k) Any deviations from, additions to or exclusions from the test method, and any other information relevant to a specific test, such as environmental conditions.
- I) Measurements, examinations and derived results supported by tables, graphs, sketches and photographs as appropriate.
- m) A statement of the estimated uncertainty of the test results (where relevant).
- n) A signature and title, or equivalent identification of the person(s) accepting responsibility for the content of the report, and the date of issue.

Comparison TS 62876 to ISOS Protocols (1/2)

	Document	Test Name	Light	Temperature	Humidity	Environment	Load				
	NePV Stability	ST1 Dry Heat	None	45/65/85 °C	Ambient	Oven	None				
ST1	ISOS 2009	T1 Shelf Life B	None	Controlled (elevated)	(Controlled)	Dry oven	None				
	ISOS 2011	ISOS-D-2 High temp.	None	65/85 °C	Ambient (low)	Oven	Open Circuit				
	NePV Stability	ST2 UV-Exposure	UV	65 °C	Ambient	UV chamber	None				
ST2	ISOS 2009		Not described in the document								
	ISOS 2011			Not described in	n the document						
	NePV Stability	ST3 Damp-Heat	None	45/65/85 °C	85 % rh	Climate chamber	None				
ST3	ISOS 2009	T4 Damp-Heat	None	40/65/85 °C	85 % rh	Environm. Chamber	None				
	ISOS 2011	ISOS-D-3 Damp Heat	None	65/85 °C	85 % rh	Environm. Chamber	Open Circuit				
	NePV Stability	ST4 Light Exposure	Daylight <i>,</i> (600-1 000) W/m2	45/65/85 °C	Ambient	Light soak chamber	Passive or Active, M _{pp}				
ST4	ISOS 2009	T2 Light Soak	(0.6 - 1) Sun	(30-50) °C	Ambient	Light Soaking Chamber	Active or Passive				
	ISOS 2011	ISOS-L-2 Laboratory Weathering	AM 1.5	65/85 °C	Ambient	Light & Temp.	M _{pp} or Open Circuit				

Comparison TS 62876 to ISOS Protocols (2/2)

	Document	Test Name	Light	Temperature	Humidity	Environment	Load
	NePV Stability	ST5 Outdoor Exposure	Ambient	Ambient	Ambient	Outdoor	Passive or Active, M _{pp}
ST5	ISOS 2009	T3 Outdoor Exposure	Ambient	Ambient	Ambient	Outside	Active or Passive
	ISOS 2011	ISOS-O-3 Outdoor	Sunlight	Ambient	Ambient	Outdoor	M _{pp}
	NePV Stability	ST6 Laboratory Weathering	Daylight, (600- 1 000) W/m2	38 °C	50 % rh/ water spray	Weathering instrument	Passive or Active, M _{pp}
ST6	ISOS 2009	T5 Light/Temp./ Humidity	1 Sun	45/65/85 °C	35 % rh	Weatheromet er	None
	ISOS 2011	ISOS-LT-2 solar-thermal- humidity- cycling	Simulator	Linear ramping (5-65) °C	Monitored, controlled at 50 % rh beyond 40 °C	Env. Chamber, with sun simulation	M _{pp} or Open Circuit
	NePV Stability	ST7 Thermal Cycling	None	−40 °C to +85 °C	Ambient	Climate chamber	None
ST7	ISOS 2009	T6 Thermal Cycling	None	−30 °C to +80 °C	Ambient (low)	Environm. Chamber	None
	ISOS 2011	ISOS-T-3 Thermal Cycling	None	-40 ℃ to +85 ℃	Near 55%	Environm. Chamber	Open Circuit


What about the test extensions suggested for Perovskite (ISOS-I)?

Test ID	Short description
ISOS-D-1I	Inert atm.; RT; dark
ISOS-D-2I	Inert atm.; elevated T; dark
ISOS-L-1I	Inert atm.; RT; light
ISOS-L-2I	Inert atm.; elevated T; light
ISOS-V-1I	Inert atm.; RT; dark; electrical bias
ISOS-V-2I	Inert atm.; elevated T; dark; electrical bias
ISOS-LC-1I	Inert atm.; RT; cycled light
ISOS-LC-2-3I	Inert atm.; elevated T; cycled light
ISOS-T-1-3I	Inert atm.; cycled T; dark

- None of these are among the standard recommended tests that are part of TS 62876
- Depending on the stress factor chosen all tests can be described within TS 62876
- However Should each of the tests be performed as part of technology development?

The testing hierarchy

Conclusion

- The Technical Specification IEC TS 62876-2-1:2018 for the stability testing of Nanoenabled PV-Devices has passed all steps of the standardization process and is officially published under the IEC.
- There is a large overlap betwenn the TS 62876 and the ISOS Protocols.
- The TS has significantly higher normative relevance than journal publications.
- The content is the result of a worldwide process of consensus (and time)
- It relies heavily on cross referencing for normative relevance.
- The suggested ISOS-I tests for Perovskites are in agreement, as long as they conform to the stress conditions outlined in the TS and as long as the general protocols are followed.
- When designing future tests it is recommended to stick to the stress factors outlined in the TS.
- Amendments to the TS or new normative documents can be created.

IEC TS 62607-7-2:2023 – Indoor Light Evaluation

HOME / IEC-NORMEN / IEC TS 62607-7-2:2023

IEC TS 62607-7-2:2023 specifies the efficiency testing of photovoltaic cells (excluding multi-junction cells) under indoor light. Although it is primarily intended for nano-enabled photovoltaic cells (organic thin-film, dye-sensitized solar cells (DSC), and Perovskite solar cells), it can also be applied to other types of photovoltaic cells, such as Si, CIGS, GaAs cells, and so on.

IEC TS 62607-7-2:2023 – Indoor Light Evaluation - contents

CONTENTS

FC	REWORD		4
IN	TRODUCT	ION	6
1	Scope		7
2	Normativ	ve references	7
3	Terms a	nd definitions	7
4	Abbrevia	ated terms	9
5	Methods	s for measuring current-voltage characterization	10
		eneral.	
		quirements	
	5.2.1	Device under test (DUT)	
	5.2.2	Illumination adjustment	
	5.2.3	Measurement procedure	
		portant additional information	
6			
	6.1 Re	eferonce obstavaltaic colle Comparison TS 62876 to ISOS P guli emens	14
	6.1.1	Selecting indoor reference photovoltaic cells	14
	6.1.2	Calibrating indoor reference photovoltaic cells	
		portant notes	
7		d indoor light – Requirements	
		andard indoor illuminance	
		andard indoor light	
		ectral irradiance of standard indoor light	
8		ility	
		escription – General	
		libration chain example	
9		ature correction	
0.50		quirements	
		mperature of the DUT	
10		I-mismatch correction	
		quirements	
	10.1.1	Indoor reference photovoltaic-cell method	
	10.1.2	Recording results.	
	10.2 Im	portant additional information	
11	Spectral	responsivity	21
	11.1 Re	quirements	21
	11.1.1	Spectral responsivity, S(\lambda).	
	11.1.2	Measurement methods	
	11.2 Im	portant notes	
12	Illuminat	tion sources	
	12.1 Re	quirements	
	12.1.1	Indoor spectral coincidence	
	12.1.2	Illuminance non-uniformity	
	12.1.3	Temporal stability	23
	12.1.4	Light source classification	23
	12.1.5	Indoor standard relative spectral responsivity	23

12.2	Illuminance non-uniformity	35
	nearity	
13.1	Requirements	
13.2	Important notes	
Annex A (informative) Explanations of the provisions, descriptions, and other con idard main body of this document.	tent
A.1	Purpose of this document	
A.2	Target of this document	
A.2	Issues discussed during deliberation.	
A.3.1		
A 3 2		
A.3.3		
A.3.4		37
A.4	Supplemental remarks on requirements	
A.4 A.4.1		
A.4.1		
A.4.2		
A.4.4		
A.4.4		
A.4.6		
A.4.0		
A 4 8		
A.4.9		
A.4.1	····· ··· ····························	
A.4.1		
A.5	Correspondence between this document and the IEC 60904 series	
	hy	
Figure 1 -	Spectral irradiance of standard indoor light at 1 000 lx	
Figure 2 -	Calibration chain example	20
9	Standard relative spectral responsivity	
Figure A.1	 Configurations of illuminance adjusting methods described in a) A.4.3 and c) A.4.3.4. 	.2,
	2 – PRISM or spectroradiometer method	
Figure A.3 – Measurement laboratories.		
Figure A.4	I – Temporal fluctuation of illuminance of a fluorescent lamp	
Table 1 -	Standard indoor illuminance	
Table 2 -	Result record	13
Table 3 -	Calibration record	15
Table 4 -	Spectral irradiance (mW/m ² /nm) of standard indoor light at 1 000 lx	
Table 5 – Light source classification		
Table 6 - Indoor standard relative spectral responsivity (%)		
Table A.1 – Spectral coincidence of F to reference spectrum CIE FL10		
Table A.2 – Spectral coincidence of L to reference spectrum CIE LED-B4		
Table A.2 – Spectral concidence of L to reference spectrum CIE LED-64		
Table A.3 – Correspondence between clauses of this document and IEC 60904		
Table A.4	 New concepts in this document derived from IEC 60904 	<mark>4</mark> 6

Standardized Indoor light sources and calibration procedures

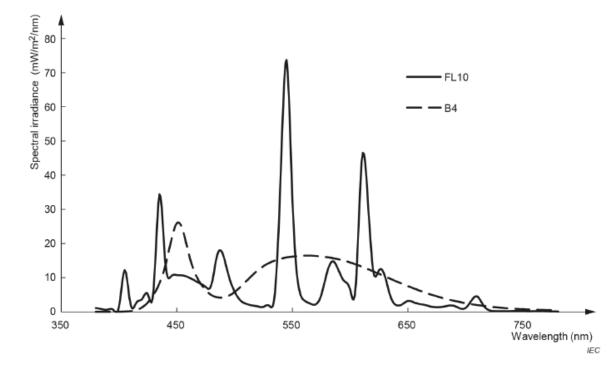
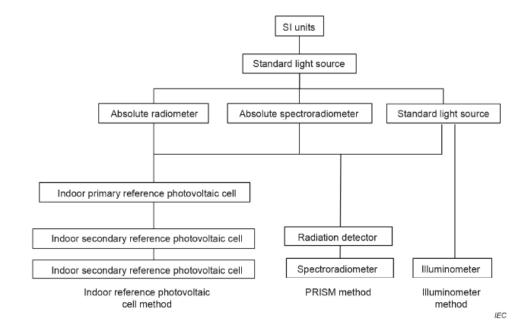



Figure 1 – Spectral irradiance of standard indoor light at 1 000 lx

1

RN

Helmholtz Institute Erlangen-Nürnberg

Figure 2 – Calibration chain example

Thank you for your attention!

Federal Ministry for Economic Affairs and Energy Sponsored by

Bavarian Ministry of Economic Affairs, Regional Development and Energy

Helmholtz

Zentrum Berlir

Contact:

Dr. Jens Hauch - Helmholtz Institut Erlangen-Nürnberg / ZAE Bayern +49 9131 9398 100, j.hauch@fz-juelich.de

part of

in cooperation with

