

kSEMAWc software

Functions for the complex refractive index modeling

Alberto Mittiga

Energy Technologies and Renewable Sources Department, Photovoltaics and Smart Network Division ENEA – C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy alberto.mittiga@enea.it

The theories for the light-matter interaction give the simplest expression for the complex dielectric susceptibility $\tilde{\chi} = \chi_1 - i \chi_2$.

Refractive index, dielectric susceptibility and permittivity $\tilde{\epsilon} = \epsilon_1 - i \epsilon_2$ are connected by the following simple equations:

$$\tilde{\epsilon} = (n - ik)^2 = 1 + \tilde{\chi}.$$

Therefore:

$$\epsilon_1 = 1 + \chi_1, \qquad \epsilon_2 = \chi_2.$$

and:

$$n = \frac{1}{\sqrt{2}}\sqrt{\sqrt{\epsilon_1^2 + \epsilon_2^2} + \epsilon_1}, \qquad k = \frac{1}{\sqrt{2}}\sqrt{\sqrt{\epsilon_1^2 + \epsilon_2^2} - \epsilon_1}.$$

Inside kSEMAWc $\tilde{\epsilon}$ is calculated as a sum of "oscillators" $\tilde{\chi}_i$ corresponding to different groups of electronic transitions:

$$\tilde{\epsilon} = 1 + \sum_{i} \tilde{\chi}_{i} = 1 + \sum_{i} C_{i} \tilde{f}_{i}$$

Sum rule on
$$\chi_2$$
:
$$\int_0^\infty \chi_2(E) E dE = \frac{\pi (\hbar q)^2 N}{2\epsilon_0 m_e} = \frac{N(cm^{-3})}{4.61706 \cdot 10^{20}} eV^2$$

where N is electron number per unit volume of the material (all of them, including the core electrons), q is the electron charge and m_e is the electron mass.

As far as possible, the oscillator functions f_i in kSEMAWc are normalized according to:

$$\int_0^\infty Im(\tilde{f}_i(E))EdE = 1$$

 \mathbf{v}

"ideal global fit
$$(0 < E < \infty)$$
" $\sum_{i} C_{i} = \frac{\pi (\hbar q)^{2} N}{2\epsilon_{0} m_{e}}$

The Flat Oscillator

Generally the fit is limited to energies lower than a few eV.

Transitions at higher energies, not explicitly included in the oscillator sum, give anyway a substantial contribute to ϵ_1 .

To simplify the fit, the 1 is replaced with a user-selectable parameter C_{flat}^2 :

$$\tilde{\epsilon} = C_{flat}^2 + \sum_i \tilde{\chi}_i = C_{flat}^2 + \sum_i C_i \tilde{f}_i$$

 C_{flat} is the only parameter of a special "flat" oscillator and, since it is squared to obtain ϵ_1 , C_{flat} corresponds fairly well to the refractive index offset generated by this "Flat" oscillator: $n \simeq C_{flat} + \dots$

A "flat" oscillator with $C_{flat} > 1$ must be always included in the fit

Oscillators available in ksemawc v2.6

 $\tilde{\epsilon}(E)$ is calculated summing up to 20 oscillators belonging to the following 18 classes:

Indirect Gap Cody-Lorentzian tail Indirect Gap Tauc-Lorentzian tail Direct Gap Cody-Urbach (exponential) tail Direct Gap Tauc-Urbach (exponential) tail Indirect Gap Cody-Urbach (exponential) tail Indirect Gap Tauc-Urbach (exponential) tail

Oscillators parameters

All the oscillators have less than four free parameters.

	C (eV ²)	E0 (eV)	D	W(eV)
Flat	C >1	-	-	-
Single peak	intensity	Peak energy	Line width	-
Lorentz-Dirac	intensity	Peak energy	Line width	Line asymmetry
Drude	intensity	-	Line width	-
Dir/Indir. Gap Lorentz	intensity	Eg	Line width	Band width
Dir/Indir. Gap Urbach	intensity	Eg	Urbach tail	Band width
Dir. Gap Exciton	intensity	Eg	Line width	Binding energy
Dir. Gap M1-M2	intensity	Eg	(E ₁ -E ₂)/2	Band width

Single peak oscillators formulas

7

 $C = (\pi \hbar^2 q^2 N)/(2m\epsilon_0)$ is the oscillator amplitude with dimensions $[eV]^2 E_0$ is the resonance energy. D is the line width. W is the asymmetry parameter for the Lorentz-Dirac oscillator D_+ is the Dawson function K is a normalization constant for the Quantum-inhomo oscillator

Lorentz: standard function for the fit of peak shaped absorption spectra. Its long tails may cause problems if used for materials with a high transparency in adjacent energy range.

Quantum-homo: obtained neglecting a not-resonant term in the Lorentz oscillator. Its simpler expression allows to obtain analytical results in convolution calculations.

Lorentz-Dirac: asymmetric line shape. Useful for the fitting of noble metals optical costants.

Quantum-inhomo: obtained as the convolution between a quantum oscillator and a Gaussian distribution centered in E_0 and with HWHM equal to D; the line width of the quantum oscillator is assumed to be much lower than the Gaussian width.

Useful to model a set of absorbing centres which cannot be considered as identical replicas due, for example, to proximity to other randomly distributed defects or to random fluctuations of strain (inhomogeneous broadening).

The fast decay of its χ_2 away from the resonance energy avoid some problems encountered using the Lorentz oscillator.

Comparison of the 4 single oscillators

Comparison of χ_2 for the 4 single oscillators

 χ_2 for the 4 single peak oscillators (Lorentz, Lorentz-Dirac, Quantum and Quantum-inhomo) with C=5.6 eV² and $E_0 = 3$ eV. D=0.1 eV for Lorentz, Quantum and Quantum-inhomo oscillators. D=0.01 eV and W=50 eV for Lorentz-Dirac oscillator.

PER LE NUOVE TECNOLOGIE, L'ENERGI

LO SVILUPPO ECONOL

Drude oscillators

The "Drude" oscillator describes fairly well the response of a free electron gas. It can be obtained simply setting $E_0 = 0$ in the Lorentz oscillator :

$$\chi_1 = -\frac{2C}{\pi} \frac{1}{D^2 + E^2}, \qquad \chi_2 = \frac{2C}{\pi} \frac{D}{E(D^2 + E^2)}.$$

D is related to the carrier scattering time τ by $D = \hbar/\tau$.

The optical mobility can be deduced from D using the equation $\mu = q\tau/m^* = (q\hbar)/(m^*D)$.

 $C = (\pi \hbar^2 q^2 N)/(2m^*\epsilon_0)$ where N is the carrier density and m^* is their effective mass.

A slightly modified version ("Drude-ionized") is available where D has an energy dependence (D(E)) to approximate the energy dependence of the carrier scattering time when the scattering is caused by ionized impurities.

Direct and Indirect gap oscillators

The oscillators introduced up to now are unsuitable to describe the optical constants of systems with a continuous distribution of density of states such as semiconductors.

The theories reported in textbooks on semiconductors usually derive χ_2 only and exclusively at energies near the fundamental gap.

The calculation is made by hypothesizing that the excited states have infinite lifetime, i.e. that every transition between two states may take place only by absorbing/emitting photons and phonons with a total energy exactly equal to the difference of their energetic levels.

Tauc approximation \iff constant momentum matrix element $|M_{cv}|^2$

A constant $|\langle r \rangle|^2$ assumption can be also used as proposed by Cody for the amorphous semiconductor case.

A relation between the matrix elements of these two operators can be obtained by using commutator relations: $(-t-)^2$

$$|\langle r \rangle|^2 = |M_{cv}|^2 \left(\frac{\hbar}{mE}\right)^2$$

Energy dependence near Eg

3D critical points

In 3 dimensions the Joint Density of States can show four types of critical points where $\vec{\nabla}(E_C(k) - E_V(k)) = 0$: M₀(minimum), M₁(saddle), M₂ (saddle), M₃ (maximum).

Band for a simple cubic lattice in the Tight-Binding s-level nearest-neighbor approximation with an overlap integral equal to D:

$$E(\vec{k}) = E_{lev} - 2D[\cos(k_x a) + \cos(k_y a) + \cos(k_z a)]$$

3D critical points : analytical approximation

To keep the oscillators simple and with 4 parameters only, M_0-M_3 and M_1-M_2 contributions to direct transitions are simulated by separate oscillators.

PER LE NUOVE TECNOLOG

Indirect gap-Cody and Indirect gap-Tauc

 E_0 is the gap energy , W is the absorption band width

This work was financially supported by the European Union's Horizon 2020 research and innovation programme under the grant agreement 952982 (Custom-Art)

PER LE NUOVE TECNO

The analytical expressions for $\tilde{\chi}(E)$ are obtained by performing the convolution between a suitable χ_2^{inf} calculated for infinite lifetime and the normalized complex $\tilde{\chi}_{qo}$ describing the response of a quantum oscillator:

$$\tilde{\chi}(E) = \int \chi_2^{inf}(E_r) \tilde{\chi}_{qo}(E_r - E) dE_r$$

The function $\tilde{\chi}_{qo}$ is given by the expression given before, normalized so that the integral of its imaginary part is equal to 1:

$$\tilde{\chi}_{qo}(E, E_r) = \frac{1}{\pi} \left[\frac{1}{E_r - E + iD} \right]$$

The result of the convolution can be expressed as analytical functions in the four previous cases.

Direct gap Cody - Lorentzian tail

Direct gap Tauc - Lorentzian tail

The convolution between the $\chi_{2-dirTauc}^{inf}$ and the normalized complex $\tilde{\chi}_{qo}$ gives:

$$\begin{split} \chi_{1-dir-Tauc}(E) &= \frac{C}{2DK_{Td}} \, \Re \left\{ \frac{1}{2(D-iE)} \left(2iD + 2E - 2\sqrt{E_0E_3} \right. \\ &\left. -(i-1)\sqrt{2}\sqrt{D-i(E-E_0)}\sqrt{-iD-E+E_3} \right) \right. \\ &+ \frac{1}{2(D+iE)} \left(-2iD + 2E - 2\sqrt{E_0E_3} + (i+1)\sqrt{2}\sqrt{D+i(E-E_0)}\sqrt{iD-E+E_3} \right) \\ &\left. + E(D-iE)^2\sqrt{D+i(E-E_0)}\sqrt{D+i(E-E_3)} / \left(D^2 + E^2 \right)^2 \right. \\ &\left. + E(D+iE)^2\sqrt{D-i(E-E_0)}\sqrt{D-i(E-E_3)} / \left(D^2 + E^2 \right)^2 \right. \\ &\left. - ED\left(D^2(E_0 + E_3) + E(-4E_0E_3 + E(E_0 + E_3)) \right) / \left(\left(D^2 + E^2 \right)^2 \sqrt{E_0E_3} \right) \right] \end{split}$$

$$\chi_{2-dir-Tauc}(E) = \frac{CD}{K_{Td}} \\ \times \Re \left\{ -\left[(D-iE)^2 \sqrt{D+i(E-E_0)} \sqrt{D+i(E-E_3)} \right] / \left(2D \left(D^2 + E^2 \right)^2 \right) \right. \\ \left. - \left[(D+iE)^2 \sqrt{D-i(E-E_3)} \sqrt{D-i(E-E_0)} \right] / \left(2D \left(D^2 + E^2 \right)^2 \right) \right. \\ \left. + D \left[D^2(E_0 + E_3) + E(-4E_0E_3 + E(E_0 + E_3)) \right] / \left(2D \left(D^2 + E^2 \right)^2 \sqrt{E_0E_3} \right) \right] \right\}$$

Direct and Indirect gap oscillators with Urbach tail

 χ_2^{inf} is modified adding an Urbach tail on both band edges. The real part χ_1 is then obtained by means of the numerical integration of the Kramers-Kronig relation:

$$\chi_1(E) = \frac{2}{\pi} \mathcal{P} \int_0^\infty \frac{\chi_2(x)x}{x^2 - E^2} dx$$

The parameters are: C=1, $E_0 = 2$ eV, W = 2 eV, D = 0.1 eV. D corresponds to the quantum oscillator line width in one case and to the characteristic energy D of the Urbach tail $(\chi_2(E) \propto exp(\pm E/D))$ in the other one.

Direct gap Tauc-exciton

The oscillator included in kSEMAWc is based on an improved version of the Elliott's theory presented by Tanguy in 1995 [1] which gives a very compact expression for the susceptibility of a semiconductor with a direct gap in the Tauc approximation taking into account the excitons and a Lorentzian broadening of the states : $E = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k!} \sum_{k=1}$

$$\begin{split} \tilde{\chi}(E) &= \frac{C\sqrt{W}}{(E+iD)^2} \left[g_a(\xi(E+iD)) + g_a(\xi(-E-iD)) - 2g_a(\xi(0)) \right] \\ g_a(\xi) &= 2\ln\xi - 2\pi \cot(\pi\xi) - 2\psi(\xi) - 1/\xi \\ \xi(z) &= \sqrt{\frac{W}{E_0 - z}} \end{split}$$

where $\psi(z) = d \ln \Gamma(z)/dz$ is the complex digamma function, D is the width of the Lorentzian broadening function, E_0 is the energy gap and W is the exciton binding energy.

[1] C. Tanguy, Optical dispersion by Wannier excitons, Phys. Rev. Lett. 75, 4090–4093 (1995).

Direct gap Tauc-exciton: broadening effect

The other parameters are: C=4, $E_0 = 1.6 \text{ eV}$, W = 40 meV.

$3D M_1 - M_2$ critical point oscillator

Plot of χ_2 for a M₁-M₂ oscillators with C=1 eV^2 , $E_0 = 1.6 \text{ eV}$, W = 2eV and D=0.5 eV using the Cody (black curve) and Tauc (red curve) approximations.

The real part χ_1 is obtained by means of the numerical integration of the Kramers-Kronig relation.

$$\chi_{2-CM12}(E) = \frac{C}{K_{CM12}} \left\{ K_1 \left[\sqrt{\frac{W}{2} - D} - \Theta(|E - \overline{E}| - D) \sqrt{|E - \overline{E}| - D} \right] + (E - E_0)(E - E_3) \right\}$$

 $\langle 0 \rangle$

26

A familiar case: crystalline silicon

A familiar case: crystalline silicon

Perovskite film on glass

ZnSe film on glass

IWO film on glass

From Drude parameters, using
$$m^* = 0.35m_e$$
, we get:
 $N(\text{cm}^{-3}) = C(\text{eV}^2) \frac{m^*}{m_e} 4.617 \cdot 10^{20} = 2.83 \cdot 10^{20} \text{cm}^{-3}$
 $\mu\left(\frac{cm^2}{Vs}\right) = \frac{1.159}{D(eV)m^*/m_e} = 38.5\left(\frac{cm^2}{Vs}\right)$

 $\langle \rangle$

CZTSSe solar cell

HJ c-Si solar cell

type		Mo	ve	d(mm-A)	rough (A)	GRAD-n	dGRAD-n/dE	CURV-n	GRAD-k	CURV-k	material
mo. film	\sim	-	dw	690.00 ≑	0.0 ≑	0.0000 ≑	0.000 💂	0.0000 💂	0.0000 💂	0.0000 💂	Material #2
mo. film	\sim	up	dw	120.00	0.0 ≑	0.0000 🛓	0.000 💂	0.0000	0.0000 💂	0.0000 💂	Material #3
mo. film	\sim	up	dw	2500000.00 🜲	1000.0 ≑	0.0000 💂	0.000 💂	0.0000	0.0000 💂	0.0000 📮	Material #4
mo. film	\sim	up	dw	150.00 🜲	0.0 🖨	0.0000 💂	0.000 🔹	0.0000	0.0000 💂	0.0000 🜲	Material #3
mo. film	\sim	up	dw	690.00 🖨	0.0 🌲	0.0000 🔹	0.000 💂	0.0000	0.0000 🗘	0.0000 💂	Material #2
k	\sim	up	dw	0.00	0.0 💂	0.0000 🛓	0.000 💂	0.0000 💂	0.0000 💂	0.0000	Material #1
k	\sim	up	dw	0.00	0.0 🗘	0.0000 💌	0.000 💂	0.0000 🗘	0.0000 🗘	0.0000 🛓	Material #1
k	\sim	up	dw	0.00 🜲	0.0 ≑	0.0000 🛉	0.000 🔹	0.0000 🗘	0.0000 🗘	0.0000 🛓	Material #1
k	\sim	up	-	0.00	0.0 🗘	0.0000 🗘	0.000 🔹	0.0000 📮	0.0000 🗘	0.0000 🜲	Material #1
			Symme	tric on 2nd face	inhomore	eneity as 23 subfi	im	computing $\langle f(x) \rangle$ wit	th N= 5	Plot Exp	Meas ! Simulat
ayers J 🚽				are on zha race	in internege						
terials			_ Symme	and on zha face	in oneg						
erials Material #:	1	unknown			n	k		with	EMA	4	f
erials Material #: Material #:	1	unknown ITO/ITO sta	andard		n	k		with	EMA	A ~	f 0.000
erials Material #: Material #: Material #:	1 2 3	unknown ITO/ITO sta HJ stack/a-	andard SiH CNR		n 1 1	k 0	···· [with	EM# ir n=1k=0 ir n=1k=0	4 ~ ~	f 0.000 0.000
erials Material #: Material #: Material #: Material #:	1 2 3 4	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1	andard SiH CNR		n 1 2 2 1 1	k 0		with a	EMA ir n=1k=0 ir n=1k=0 ir n=1k=0	4 ~ ~	f 0.000 0.000 0.000
erials Material #: Material #: Material #: Material #: Material #:	1 2 3 4 5	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1 constant nk	andard SiH CNR		n 1 1 1 1	k 0 0 0 0		with a	EMA ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0	×	f 0.000 0.000 0.000 0.000
erials Material #: Material #: Material #: Material #: Material #: Material #:	1 2 3 4 5	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1 constant nk constant nk	andard SiH CNR		n 1 1 1 1 1 1 1 1 1	k 0 0 0 0 0 0 0		with	EMA ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.000 0.000 0.000 0.000
erials Material #: Material #: Material #: Material #: Material #: Material #: Material #:	1 2 3 4 5 5 7	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1 constant nk constant nk constant nk	andard SIH CNR		n v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1	k 0 0 0 0 0 0		with	EMA ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.000 0.000 0.000 0.000 0.000
erials Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #:	1 2 3 4 5 5 7 3	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1 constant nk constant nk constant nk	andard SiH CNR		n 1 1 1 1 1 1 1 1 1 1 1 1 1			with	EM# ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.000 0.000 0.000 0.000 0.000 0.000
erials Material #2 Material #2 Material #2 Material #2 Material #2 Material #2 Material #2 Material #2 Material #2 Material #2	1 2 3 4 5 5 7 3	unknown ITO/ITO str HJ stack/a- sili/cSixx.1 constant nk constant nk constant nk constant nk	andard SiH CNR		n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			with	EMA ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.00
erials Material #: Material #:	1 2 3 4 5 5 7 3	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1 constant nk constant nk constant nk constant nk constant nk	andard SiH CNR		n v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1			with	EMA ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.00
rials Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: Input SF input PDS	1 2 3 4 5 5 7 3	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1 constant nk constant nk constant nk constant nk constant nk	andard SiH CNR		n v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1			with	EM4 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rials Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: input SF input FI I-1	1 2 3 4 5 5 7 3	unknown ITO/ITO sta HJ stack/a- sill/Sixx.1 constant nk constant nk constant nk constant nk constant nk	andard SiH CNR		n v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1			with	EM# ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rials Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: input SF input SF input ELI-: input ELI-:	1 2 3 4 5 5 5 7 8	unknown ITO/ITO sta HJ stack/a- sili/Csixx.1 constant nk constant nk constant nk constant nk constant nk constant nk	andard SiH CNR		n v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1			with	EMA ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0 ir n=1k=0		f 0.000 0.00
Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: Material #: input SF input PDS input ELI-: input ELI-:	1 2 3 4 5 5 5 5 7 3 8 1 2 3	unknown ITO/ITO sta HJ stack/a- sili/cSixx.1 constant nk constant nk constant nk constant nk constant nk constant nk	andard SiH CNR		n 1 1 1 1 1 1 1 1 1 1 1 1 1			wth	EMA ir n=1k=0 ir n=1k=0		f 0.000 0.00

Acknowledgements

Besides **Marco Montecchi** and **Alberto Mittiga** many peoples helped in the kSEMAWc development. We thank:

- Claudia Malerba and Francesca Menchini for their work in testing and improving kSEMAWc to characterize semiconductor materials

- Enrico Nichelatti for the wise search for analytical solutions of the integrals on the density of the states, as well as for the LATEX revision of the manual

- Francesco Biccari for his useful suggestions for simplifying the software distribution
- Luca Serenelli for his support in outlining the Linux installation procedure

- **Giacomo Mazzamuto** for his support in the compilation and linking of the GSL library under Windows

And...Thank You for your attention !

This research was financially supported by:

- EU H2020 research and innovation programme under the grant agreement 823802 (SFERA-III)
- EU H2020 research and innovation programme under the grant agreement 952982 (Custom-Art)

- the Italian Ministry of Economic Development in the framework of the Operating Agreement with ENEA for the Research on the Electric System.

